DSN Standard Practices for Software

Implementation

D. C. Preska
TDA Planning Office

DSN Standard Practices for implementing software are being applied to all
new computer programs and modifications to be transferred to DSN Operations.
This article presents an overview of the DSN methodology and prescribed
practices. The methodology is based on established good engineering practices
combined with newer software technologies involving structured programming,
top-down principles, and concurrent construction and documentation. The

- practices provide the DSN with a means of producing maintainable software
which is correct, on schedule, and within cost limitations. The ultimate goal is to
permit DSN engineers and managers to concentrate their efforts not on details of
machines and languages but rather on the tracking and data acquisition

problem to be solved.

l. Introduction

To more effectively produce software, elements of the
DSN Programming System have been defined to allow
refinement and application of new methods in an orderly
manner. The ultimate goal is to permit DSN engineers
and managers to concentrate their efforts not on details of
machines and languages but rather on the tracking and
data acquisition problem to be solved. The DSN
Programming System includes (1) implementation method-
ology, (2) Standard Practices for applying adopted
methods, (3) language and data base standards, and (4)
implementation aids. In conjunction with the Program-
ming System, a DSN Software Management Seminar with

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-29

wide participation was established and several pilot
software implementation projects were undertaken. This
report presents an overview of the Standard Practices
(Ref. 1) developed from both the methodology research
and continuous input from the Software Management
Seminar.

The prescribed methodology combines proven, well-
established engineering practices with emerging tech-
niques that are mathematically sound and bhave been
demonstrated by many independent workers involved in
software development. The elements of the methodology
and the management practices involved in their applica-
tion are discussed, followed by a set of brief statements

119

that sum up the essence of the Standard Practices for
software implementation.

il. Methodology

The methodology used for implementing DSN opera-
tional software makes use of the theorems of structured
programming and its consequent enabling of top-down
construction of programs. Application of structured
programming and top-down practices further allows
design and documentation to be performed concurrently
with the coding and correctness testing in orderly,
hierarchical builds. These terms will be defined below.
The elements of the methodology are:

(1) Principles of Structured Programming
(2) Top-Down Construction

(3) Concurrent Design and Documentation, Coding, and
Testing

A. Principles of Structured Programming

Structured programming is a program organizing and
implementing technique that involves the concept of
representing the control logic of arbitrary computer
programs with iterations of a limited set of primary
program (or flowchart) structures. The objectives of
structured programming are increased clarity, increased
commonality (interchangeability/module-to-module, pro-
gram-to-program, project-to-project), reduced complexity,
and simplified maintenance. Also, structured programming
allows the top-level main program control to be designed
and documented while leaving the lower levels of detailed
computational design to be rigorously designed later.

The Structured Programming Theorem states that any
program, arbitrarily large and complex, can be expressed
by primary structures that need include only the
operations for performing (a) functional sequencing, (b)
conditional branching, and (c) conditional iteration
(looping). Application of the concept of iterating only a
small number of standard structures results in a highly
organized and structured representation of the design and
subsequent code that is easy to implement, read, test, and
understand. Coding of the design by using prescribed
primary code structures is referred to as “structured
coding” which typically also encompasses code indenta-
tion and line spacing to display the program flow and
modularity clearly to persons reading the code.

The ease with which the primary structures can be
translated into code depends upon the characteristics of
the programming language. To facilitate this translation,

120

the DSN intends to adopt the language MBASIC as its
standard for nonreal-time programs. The main advantage
to a DSN standard language, however, is the full
portability of DSN applications programs from one
machine to another.

Limiting the complexity of a flowchart enhances its
clarity and readability. This can be achieved by using the
“striped module” technique (Ref. 2) to indicate that
further detail is provided elsewhere. Unstriped modules
contain sufficient detail to be translated directly into code.

B. Top-Down Construction

The top-down approach involves the concept of stating
the total problem in its operational environment and
progressing in a systematic manner to greater levels of
detail. This provides the capability for engineers and
managers to fully understand the problem and to define a
solution (a proposed program) based on this understanding.
The early stages of this program-defining process are
characterized by iteration and nearly parallel thought
processes, of which most, ideally, should have been
completed in advance of the formal implementation. An
orderly, more serial process of program production or
construction follows, and includes: final detail design,
translation of this design to code, auditing and testing the
code, and documentation of the design, code, and test
processes. The top-down procedure for this construction
process is referred to as top-down construction.

Top-down construction is especially adapted to struc-
tured programming because the Structure Theorem allows
the top levels to be constructed first and then the lower
levels to be detailed (unstriped) and constructed in an
orderly and rigorous fashion. Specifically, in terms of
detailing and flowcharting in preparation for construction,
one starts with a single striped module (level zero). That
module is analyzed and expanded into a flowchart with
two or more modules. The structure of the flowchart must
be either a prescribed structure or a permitted combina-
tion of prescribed structures where any or all of the
modules may be striped. Each striped module at this point
(level 1) is expanded into a flowchart in the same way.
The modules which are not striped need not be expanded
and this means that they can be directly translated into
code without further design. This process is repeated at
the next level and continued until there are no striped
modules which have not been expanded. The expansion
can be completed in some paths before it is completed or
even started in others.

External interfaces are defined, negotiated, and imple-
mented early, and then used in the subsequent develop-

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-29

ment. This minimizes the occurrence of possible serious
program integration problems after the internal develop-
ment has been completed. Also, the need for developing
program “drivers” is reduced or eliminated. This progres-
sion of the implementation from the interfaces into the
detailed program computations is consistent with the
theory of computable functions, which requires that at any
point of computation all elements needed to compute the
next value have already been computed.

The top-down approach is also a valuable management
tool, in that the resulting end-to-end overall definition of
the proposed program and its component parts and
structure provide program design guides and data needed
for estimating the scope of the total job, for determining
the nature of the work and needed resources, for planning
and scheduling work through the various phases, and for
managing and conducting design reviews.

C. Concurrent Design and Documentation, Coding, and
Testing

Concurrent activities of design and documentation,
along with coding and testing in hierarchical builds
(module-by-module program expansions, each increasing
in lower level detail) are enhanced by the use of
structured programming and top-down practices. Timely
documentation, resulting from use of these practices,
provides ready access to current program detail and status.
Management of the effort and provision for Quality
Assurance are both facilitated. Potential problem areas
can be identified early for timely action. Also, a large-scale
separate documentation effort at the end of the project,
with its attendant problems, is avoided.

In terms of coding and testing, any unstriped module
can be coded as soon as the flowchart on which it appears
has been completed and signed off. Moreover, the
program can be run provided any striped modules are
properly represented by modules of temporary code
called dummy stubs (code which produces data values
which are needed to run the rest of the program along
other paths). The dummy stubs are intended to work for
one or more special test cases. There is a correctness
theorem in Structured Programming which says that if the
part already coded is proven to be correct, then it will still
be correct after the rest of the program is coded, and thus
need not be checked again. The test cases verify, build-by-
build, the correctness of the module when imbedded in
higher builds of code by testing every module-connecting
path and by performing other tests as needed to uncover,

for example, errors in logic, computation, formatting,

timing, recovery, and documentation. Correcting errors as
they are introduced minimizes rework and avoids later

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-29

serious impacts due to compounding of errors. It can
therefore be expected that the total amount of testing
(correctness and acceptance) will be greatly reduced,
since, at completion of coding, there is no need to repeat
extensive internal program (correctness) testing; the
program is correct. Needed are only those tests (accept-
ance) that demonstrate to the user the program’s
responsiveness to requirements in its full operational
environment.

Figure 1 represents the process followed in doing
concurrent design and documentation, coding, and testing
from the top down. The figure shows that the module
design as documented must be approved before the
module coding and correctness test design are begun, both
of which must, in turn, be completed and checked before
the correctness testing is performed. However, after
design approval, the test is designed at the same time as
the coding is being done. Testing, and approval of the
results of the test and code audit, formally completes the
build at this level. Symbols for scheduling as shown are
provided for planning and monitoring the implementation
progress within each build.

1. Management

The methodology enables effective application and
management of the practices and concepts, and also
enables effective team operations for large efforts.

The DSN software implementation process extends
from an initial program justification activity through
program transfer to operations and involves (1) planning
and specifying requirements, (2) design definition, (3)
design and production, (4) acceptance, and (5) operations
and maintenance. Major milestones are defined mainly at
the end of each phase of activity, above. Figure 2 presents
an overview of a typical DSN software implementation
sequence, and Figure 3 summarizes the DSN software
management and implementation plan, as derived from
Fig. 2. The figures are self-explanatory; however, further
description of the management and implementation
activities can be found in Ref. 1. Supporting DSN
Standard Practices shown in Fig. 3 are being produced.

The implementation process using the prescribed
methods is flexible and can accommodate both large and
small efforts. For large efforts, an implementation team
can be established, which is directed by a Cognizant
Development Engineer (CDE) who is responsible for the
implementation. The CDE is provided with functional
support as shown in Fig. 4, such as (but not limited to): a
Programming Secretariat for administrative assistance,

121

project communications, and data handling; Quality
Assurance services; and technical specialist support as
required, spanning the disciplines of design, coding, and
test design, conduct, and evaluation. The functional tasks
are independent but are not necessarily related on a one-
to-one basis to team personnel. The Programming
Secretariat maintains the project’s development records,
controls the completed code, and serves as the center of
communications for the entire team. Specialists, as
required, are functionally separated but work as a team on
a module-by-module basis and provide needed expertise to
the implementation, as well as providing, to a degree,
“checks and balances” to the total process. Quality
Assurance provides independent code auditing services to
the team on a module-by-module basis. Reference 1
provides additional detail on these and other functional
tasks involved, their interaction, and a functional task
statement of responsibilities for each.

Smaller efforts may require that the functional tasks be
spread among fewer available personnel, which tends to
lessen both the independence of each task and the
inherent self-checking of the implementation process. This
can be partially compensated for during the design
reviews, where independent views can be factored in.
Also, as for large efforts, independent code auditing on a
module-by-module basis is required, and provides some of
the checking needed.

IV. Summary

The following brief statements summarize the baseline
software implementation guidelines that are applicable to
DSN operational programs. Further comments, explana-
tions, and examples of their application can be found in
Ref. 1. Figure 5 displays the Table of Contents of Ref. 1 to
show the overall organization of information upon which
these guidelines are based.

(1) Adherence to DSN Software Standard Practices.
DSN Standard Practices governing software imple-
mentation and documentation are to be followed for
all computer programs to be transferred to opera-
tions.

(2) Adherence to Referenced Practices. Referenced
practices, standards, and requirements are consid-
ered to be part of the DSN Standard Practices and
are to be followed as an extension of Item (1), above.

(3) MBASIC/Standard Language for Nonreal-Time
DSN Computer Programs. It is the intent of the

122

DSN to use MBASIC as the standard language for
nonreal-time DSN computer programs.

(4) Top-Down Concurrent Implementation. Software
will be implemented in a top-down manner to allow
the design and documentation as well as coding of
the program to progress concurrently with the
generation of correctness test procedures and the
correctness testing itself.

(5) Use of Structured Programming Principles. Only
prescribed programming structures will be used for
flowcharting the design and translating the design
into computer code.

(6) Modular Implementation. By applying Items (4) and
(5), modules will be implemented in hierarchical
subordinating levels of detail. Each module will be
limited in length and complexity to a single page-
size (8 1/2 X 1l-in. (22 X 28-cm)) flowchart by
using the Striped Module technique of hierarchical
expansion.

(7) Implementation Team. For sufficiently large pro-
jects, the Cognizant Development Engineer will
establish and direct an implementation team that is
supported by the following main functions:

(a) Programming Secretariat
(b) Quality Assurance

(c) Design, coding, test design, and testing special-
ties, as needed

(8) Standard Project Milestones. Standard project
milestones will be used for technical and manage-
ment planning and control of the software imple-
mentation.

(9) Project Scheduling. Schedules for meeting the
project milestones will be established and periodi-
cally assessed by the Cognizant Development
Engineer and controlled by the cognizant manager.

(10) Project Reviews. During the planning phase, dates
will be set for all formal design reviews; the
Cognizant Development Engineer will coordinate
and conduct the reviews.

(11) Project Documentation. Documentation will be
compiled concurrently with the implementation
progress and will be available on a continuous basis
for use and review.

(12) Quality Assurance. Quality Assurance (QA) will
provide an independent check on DSN software
quality.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-29

Acknowledgment

The author is indebted to the members of the DSN Software Management
Seminar, whose support emanated from JPL Organizations 15, 33, 39, 65, and 91, as
well as from the DSN itself.

References

1. Software Implementation Guidelines and Practices, DSN Standard Practice
810-13, Aug. 15, 1975 (JPL internal document).

2. Tausworthe, R. C., Standardized Development of Computer Software, Jet
Propulsion Laboratory, Pasadena, Calif. (in preparation).

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-29 123

(BUILDN)

DESIGN LOGIC
AND DOCUMEN

SCHEDULING
SYMBOLS FOR
BUILD N
MILESTONES

———————————— Y ORD
DESIGN
APPROVED

DESIGN TEST
PROCEDURE

VERIFY
TEST
DESIGN

P
—————YORP

PROCEDURE
VERIFIED

TEST CODE; AUDIT;
REPORT RESULTS

COMPLETED

T
ves . SODE TESTING COMPLETED _ _yor T

TESTED
BUILD N +1

Fig. 1. Top-down, concurrent construction process for Build N

124 JPL DEEP SPACE NETWORK PROGRESS REPORT 42-29

PRIMARY RESPONSIBILITY
FOR ACTIVITIES 'N'T‘AT0R£—~——| CDE (OR PE)

COE >
CSE

ACTIVITIES
PLANNING

A

SOFTWARE
REQUIREMENTS DOCUMENT

ARCHITECTURAL DESIGN

| (MANAGEMENT APPROVAL

-® TO PREPARE SDD)

A _A

SOFTWARE
DEFINITION DOCUMENT

(MANAGEMENT APPROVAL

DESIGN AND PRODUCTION

® TO IMPLEMENT DESIGN)

A A A

SOFT WARE OPERATOR'S MANUAL AND
SPECIFICATION DOCUMENT

ACCEPTANCE TESTING

~_ PREPARE . TEST

TEST AND TRANSFER DOCUMENT

OPERATIONS
AND MAINTENANCE

v

DURATION OF THE
IMPLEMENTATION PROJECT

* TYPICALLY, DSN SYSTEMS ENGINEERING

(DATA SYSTEM S/W); OR OTHERS
THROUGHOUT DSN

Fig. 2. Sequence of activities in a typical DSN software implementation project

[P P SIpUVIS SUEpIG Sy Sy M Sl

DESIGN REVIEWS
A MANDATORY
A OPTIONAL

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-29

1 & -

125

ueld uonejuawsajduw pue Juawadeuew aiemyos NSA € B4

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-29

[_ _ T !
| | _ _ |
, | | |
s 11§ A 1z-ots _ _ _
_ _ J _ A |
_ Ba_A» 61-018 /1018 %ﬂ 91-018 | A.:mo,
N 1\ Taas 1 Py 1 NOILY¥V43dd
_ | _ _ | $3DILOVYd
SWOS 0z-018 QMQHNPM zwm
¥0dd
| _ | | _
Qidd¥ LIS ‘SNOILY¥IdO Q.ddv & Q.:ddv NW Qidd¥ Qiddv % SINOLSIUW
OL QRTISNVAL ass WOS m3IATY NOISIG aas ays _]
ANV Q31d3DIV M/§ _ 1BAITHOMH _ I
_ _ AIOVNYW
_ _ linvzinood—
_ _ :wm ¥O) 3GD =~
Q¥VOE 10¥INOD 4 — s — — — —— ass
IONVHD NSO { -—S | ! = _ |
430NN - —— - —— [| |os
- | 1
r + = —— ———— | aas
L
a¥s
[| | | PO ouinos
_ _ _ _ _ JONVHD
INIWNDOQ ¥3ISNVYL | _ | _
ANV 1S31 J¥YMLIOS | _ _
_ SINIWN20Q
] T el S o |
| INIWND0Q m.ww@ﬁw% _ NOMIN 34 | Szuzms:omm uw«%wwm
NOILYDI41D3dS WYMLIOS |
WYMLIOS _ _ 1
(AYOLVYANYW
11N w<Aﬁw q ---Q.I.A.W Q q _ \
¥34SNVYL 13AIT-HOIH IVANLDILIHDYY SINIWIIINOTY _ m%n_\m%
¢ - NOIS3a
| 1INYLEIISY LAUNOD 2 T3 LIS SSNVIA ABISNVL) _ |
ANV 3DNVL4IDDV ILVILING °Z |
S1S3L NIVWHDN3IE NIVINIVW @ SQIVANVLS . . JAO¥dY ANV M3IAZY "€
SIONVHD QIAOY4AY LYISNI ® | 133V S3IBVYIN 130 | ass cwvonvw s o _ 434 1HOMNS 1o 12 200 Loms 2
INIWNO¥IANG s SMIIATY @ TINNOSY3d 130ddNS 133135 "2 | 35vHd LXIN ¥Od SIUNOSTY » _
NOIS30 QIINIWNDOAQ NIVINIVW - °Z _ TYNOMYYIIO | 1531 ‘NOISIG 1531 300D e | 3INAIHIS ONV LSOD 150D ‘3INA3HIS 1IVUIAO
NTTYNNYW GNY WYEOO0Ud e SNAID0¥d ANY SHSYL 40 3405 SINIWIFINOIY IVIINHDIL |
QIYINDIY S¥ 3Lvadn © | aas | viva-NOIs3aTIvia e NOISIQ IVANLIILIHDOIY / TWNOILDNNA M/S o
1304dNS/NOILINA0Yd ® ANV G¥S S13IW WYIDOYd ® D3ds TYNYILX] ® _ MOV4/SNOILONNS @ _ M/S 404 SINIWTIINOI o _ ALIALDY
WVIOOd ILVEO L | avatsnowsa | 313714W0D ‘1 _ INHIG L | AJILNZAT L dOryw
H } . |
} +
| waLl
IDNVNIINIVW ONILSIL | NOILINQO¥d _ NOILINI43Q | SINIWRIND Y |
ANV SNOILWYIO | IDNVLIDDV ONY NOISId | NOISIQ | OGNV ONINNYId
A¥IAI3Q-1504 i IVMLIOS _ IYMLIOS i IVMLIOS . RVMLIOS _ S3ISVHI

126

COGNIZANT

MANAGEMENT
NTTATOR JUSER COGNIZANT DEVELOPMENT
REPRESENTATION ENGINEERING /
PROJECT ENGINEERING
PROGRAMMING
SECRETARIAT
TEST CONDUCTING

CHECKING AUDITING (BY QA)

¥

DESIGN CODING; CHECKING : TEST DESIGN
|
|

VERIFICATION

EVALUATION

Fig. 4. Software implementation functional tasks

JPL. DEEP SPACE NETWORK PROGRESS REPORT 42-29

127

128

CONTENTS

Section Title
L INTRODUCTION. . . v« v v v it e e e e e e e e e e e e e
A. PURPOSE. i it it it ii i e
B. SCOPE. ittt
C. APPLICABILITY N
D. CHANGES AND REVISIONS
II. METHODOLOGY AND POLICYo oo v vt
A. METHODOLOGY FOR IMPLEMENTING DSN
SOFTWARE. o it ettt i i e e e e
B. POLICIES FOR IMPLEMENTING DSN SOFTWARE.
1. Adherence to DSN Software Standard Practices
2. Adherence to Referenced Practices.
3. MBASIC/Standard Language for Nonreal-Time
DSN Computer Programs.
4. Top-Down Concurrent Implementation
5. Use of Structured Programming Principles. . .
6. Modular Implementation
7. Implementation Team
8. Standard Project Milestones.
9. Project Scheduling
10, Project Reviews.
11. Project Documentation
12. Quality Assurance,

III. SOFTWARE IMPLEMENTATION PROCESS AND

GUIDELINES. e e e et e e e e
A. IMPLEMENTATION PHASES
1. Planning and Requirements

.......

.......

........

Fig. 5. Contents of DSN Standard Practice 810-13, “Software Implementation Guidelines and Practices”

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-29

CONTENTS (cont'd)
Section Title

a. Initiation. o o e e

b. SRD Review and Approval

c. Responsibilities. 0.

2. Design Definition oo i oo oL

a. Architectural Design 0.

b. SDD Review and Approval

c. Responsibilities. o000

3. Designand Production.« ..o

a. Top-Down, Concurrent Implementation

b. Design Reviews« . v vt v vt o .y

c. SSD and SOM Documents oo vt oo

d. Responsibilities.o o

4, Acceptance Test and Transfer

a. Software Testand Transfer Document (STT).

b. Acceptance Testing. v oo oo

c. DesignReview.ot ineneenn

d. Transfer to Operations

e. Responsibilities. Ly

5. Operations and Maintenance.

B. MILESTONES . . . ¢t it i i it e et et e ettt ee o eoe et o e o
C. REVIEWS . . o i it ittt i it e e it e ettt st e oo s an e s
D. DOCUMENTATION. . o v v ot e i it it et v et o e aeee e e
1. Documentation Set 0o

2. Documentation Process.« v v v v v

a. General Document Information.

b. DSN Program Library.

c. General Documentation Guidelines.

E. QUALITY ASSURANCE ¢t ot i ittt e e et e e o e e e

3-6

3-6
3-6
3-7

3-7
3-8
3-8

3-13
3-13
3-13
3-14
3-15

3-16

Fig. 5 (contd)

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-29

129

-130

Section

APPENDIX A.

CONTENTS (cont'd)

Title Page

DSN SOFTWARE IMPLEMENTATION

METHODOLOGY . . ¢« v i e et e e e ot v e oo oo v s v A-1
APPENDIX B. . DSN SOFTWARE IMPLEMENTATION

FUNCTIONAL TASKS & v & ¢ i e v v et et et e oo v o v B-1
APPENDIX C. DSN SOFTWARE IMPLEMENTATION

POLICIES. & v it e v 6 e v s o s o s a o o o o o o s s o aaoos C-1
APPENDIX D. DSN SOFTWARE IMPLEMENTATION

DOCUMENT QUTLINES. . . & ¢ ¢t v v o v v v v e o v o s o D-1
APPENDIX E. ABBREVIATIONS . ¢« ¢ ¢ ¢ v v v o 0 s o s s s s o o s oo oo E-1
APPENDIX F. REFERENCE DOCUMENTS ¢ ¢ v v v v v v v o v v F-1

Fig. 5 (contd)

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-29

